Amiloride Blockades Lipopolysaccharide-Induced Proinflammatory Cytokine Biosynthesis in an I B- /NF- B–Dependent Mechanism Evidence for the Amplification of an Antiinflammatory Pathway in the Alveolar Epithelium
نویسندگان
چکیده
It has been previously reported that amiloride suppresses inflammatory cytokine biosynthesis. However, the molecular mechanism involved has yet to be ascertained. Therefore, the immunoregulatory potential mediated by amiloride and the underlying signaling transduction pathway was investigated. Exposure of alveolar epithelial cells to amiloride or its analog, 5-( N,N -hexamethylene)-amiloride (HMA), reduced, in a dosedependent manner, lipopolysaccharide (LPS)-induced secretion of interleukin (IL)-1 and tumor necrosis factor (TNF). This inhibitory effect was associated with the augmentation of a counter antiinflammatory response, mediated by IL-6 and IL-10. Analysis of the mechanism implicated revealed the involvement of an inhibitory B (I B)/nuclear factor B (NFB)–sensitive pathway. Amiloride and HMA suppressed the phosphorylation of I Bmediated by LPS, thereby allowing its cytosolic accumulation. Furthermore, both inhibitors interfered with the nuclear translocation of selective NFB subunits, an effect associated with blockading the DNA-binding activity of NFB. Recombinant IL-10 blockaded LPS-induced biosynthesis of IL-1 and TNFand reduced NFB activation. Immunoneutralization of endogenous IL-10 reversed the inhibitory effect of amiloride on proinflammatory cytokines and restored the DNA-binding activity of NFB. These results indicate that amiloride acts as a novel dual immunoregulator in the alveolar epithelium: it downregulates an inflammatory signal and at the same time upregulates an antiinflammatory response. This biphasic effect is IL-10 sensitive and is associated with the selective targeting of the I B/NFB signaling transduction pathway.
منابع مشابه
Monascin ameliorate inflammation in the lipopolysaccharide-induced BV-2 microglial cells via suppressing the NF-κB/p65 pathway
Objective(s): The pathophysiology of neurodegenerative diseases is complicated, in which inflammatory reactions play a vital role. Microglia cells activation, an essential process of neuroinflammation, can produce neurotoxic molecules and neurotrophic factors, which aggravate inflammation and neuronal injury. Monascin, a major component of red yeast rice, is an azaphil...
متن کاملThe effect of down-regulation of CCL5 on lipopolysaccharide-induced WI-38 fibroblast injury: a potential role for infantile pneumonia
Objective(s): Aberrant expression of CCL5 has been found in several kinds of inflammatory diseases, and the roles of CCL5 in these diseases have also been reported. However, the role of CCL5 in infantile pneumonia is still unclear. Thus, the function and acting mechanism of CCL5 in the in vitro model of infantile pneumonia were researched in this study. Materials and Methods: Human fetal lung f...
متن کاملAnti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells
Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes. This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...
متن کاملAnti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells
Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes. This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...
متن کاملSalvianolic acid B improves insulin secretion from interleukin 1β-treated rat pancreatic islets: The role of PI3K-Akt signaling
Background and Objective: Oxidative stress induced by proinflammatory cytokines such as IL-1β plays a major role in β-cell destruction in diabetes type 1. Salvianolic acid B (Sal B) is a polyphenolic compound with antioxidant and protective effects. Thus, objective of this study was to assess the protection exerted by Sal B on isolated rat islets exposed to IL-1β and to investigate an underlyin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001